Investigación:
1) Que es el modelo OSI
El modelo de interconexión de sistemas abiertos (ISO/IEC 7498-1), también llamado OSI (en inglés, Open System Interconnection 'interconexión de sistemas abiertos') es el modelo de red descriptivo, que fue creado por la Organización Internacional para la Estandarización (ISO) en el año 1980.1 Es un marco de referencia para la definición de arquitecturas en la interconexión de los sistemas de comunicaciones.
2) breve historia de osi
Para poder simplificar el estudio y la implementación de la arquitectura necesaria, la ISO (Organización Internacional de Normas) creó el modelo de referencia OSI para lograr un estandarización internacional de los protocolos. Este modelo se ocupa de la Interconexión de Sistemas Abiertos a la comunicación y está divido en 7 capas, entendiéndose por "capa" una entidad que realiza de por sí una función especifica.
Los principios que se aplicaron para su división en capas son:
1. Se debe crear una capa siempre que se necesite un nivel diferente de abstracción.
2. Cada capa debe realizar una función bien definida.
3. La función de cada capa se debe elegir pensando en la definición de protocolos estandarizados internacionalmente.
4. Los límites de las capas deben elegirse a modo de minimizar el flujo de información a través de las interfaces.
5. La cantidad de capas debe ser suficientes para no tener que agrupar funciones distintas en la misma capa y lo bastante pequeña para que la arquitectura no se vuelva inmanejable.
3) Importancia del modelo OSI
Ahhh, el modelo OSI… Según wikipedia, El modelo de interconexión de sistemas abiertos (ISO/IEC 7498-1), también llamado OSI (en inglés open system interconnection) es el modelo de red descriptivo, que fue creado por la Organización Internacional para la Estandarización (ISO) en el año 1984. Es un marco de referencia para la definición de arquitecturas en la interconexión de los sistemas de comunicaciones.
Yo puedo dar un concepto más digerible… Nos permite entender el funcionamiento de la comunicación en las redes de una forma más sencilla, categorizando cada etapa de la comunicación en capas.
Básicamente son 7 capas (como se muestra en la imagen) aunque, muchos hace referencia a la capa 8… ¿Quién creen que es? jajajj, el usuario común y silvestre!, pero bueno. No es parte legal del modelo OSI.
Cada capa tiene su función específica que va desde la parte física de la red (cables, equipos de comunicación, tarjetas de red, forma de transmitir por ejemplo mediante cobre, fibra óptica, etc.), hasta la capa de aplicación que es en donde residen las aplicaciones de usuarios (ejemplo: cliente de correo mediante el protocolo SMTP/POP3/IMAP, navegador de internet mediante HTTP, etc.)
El diagrama explica muy resumidamente el funcionamiento de cada capa.
Para qué podría servir ésta información preguntarán? para muucho!, creo que todo informático debería de conocer el modelo OSI y entenderlo bien por cultura general informático. Más importante aún para la gente que trabaja en redes, soporte técnico, infraestructura, etc.
Por ejemplo… Les quieren vender un switch y les dice que es capa 3… Si no se conoce al respecto, el cliente puede quedar “Apantallado” con lo que le dijo… Capa 3… ¿De qué esta hablando?
Nada de qué apantallar realmente… El usuario quizás al fin y al cabo lo que necesita es interconectar computadoras en una oficina de 5 máquinas, pero como trabaja para una empresita de $$$, capaz compra el switch de capa 3 que sería igual que ir en un Ferrari a la tienda XD XD
Bien, de capa 3 implica que el “dichoso” switch maneja el tema de enrutamiento, por lo que puede interconectar varias redes y, generalmente éstos switches, tienen capacidades administrativas como por ejemplo el manejo de VLAN’s, Port Mirroring, STP, PoE, etc., cosas que NO necesita el cliente.
Basta y sobra con un switch de capa 2 (el más común y silvestre que se encuentra hoy en día), dado que lo que necesita el cliente es interconectar las computadoras de oficina.
Tal vez alguien se lo quiera bajar con un Hub?… puede ser, porque básicamente le solventaría, pero estaría generando tantos dominios de colisión y sería ineficiente la red a medida creciera. Porqué? por la propia tecnología del Hub (por cierto, funciona a nivel de capa 1).
Creo que se mira la importancia de conocer el modelo OSI verdad? Además, si alguien llega a quererte impresionar (sabiendo que eres programador) y te dice, creo que ahí tenes que definir en tu sistema, en la capa de sesión, la forma de autenticación. Y tu te quedas… ¿Cómo????, pero como sabes referente al modelo OSI, sabrías que el tipo esta más perdido que un chucho en procesión y le dirías… siii, por supuesto (para que no se sienta mal XD).
Se puede ver la importancia de conocer el modelo OSI? así no te pueden dar “pajas”.
4) Definición de las capas que integran el mois
Ad by GoSave | Close
El modelo de interconexión de sistemas abiertos (OSI) tiene siete capas. Este artículo las describe y explica sus funciones, empezando por la más baja en la jerarquía (la física) y siguiendo hacia la más alta (la aplicación). Las capas se apilan de esta forma:
Aplicación
Presentación
Sesión
Transporte
Red
Vínculo de datos
Física
CAPA FÍSICA
La capa física, la más baja del modelo OSI, se encarga de la transmisión y recepción de una secuencia no estructurada de bits sin procesar a través de un medio físico. Describe las interfaces eléctrica/óptica, mecánica y funcional al medio físico, y lleva las señales hacia el resto de capas superiores. Proporciona:
Codificación de datos: modifica el modelo de señal digital sencillo (1 y 0) que utiliza el equipo para acomodar mejor las características del medio físico y para ayudar a la sincronización entre bits y trama. Determina:
Qué estado de la señal representa un binario 1
Como sabe la estación receptora cuándo empieza un "momento bit"
Cómo delimita la estación receptora una trama
Anexo al medio físico, con capacidad para varias posibilidades en el medio:
¿Se utilizará un transceptor externo (MAU) para conectar con el medio?
¿Cuántas patillas tienen los conectores y para qué se utiliza cada una de ellas?
Técnica de la transmisión: determina si se van a transmitir los bits codificados por señalización de banda base (digital) o de banda ancha (analógica).
Transmisión de medio físico: transmite bits como señales eléctricas u ópticas adecuadas para el medio físico y determina:
Qué opciones de medios físicos pueden utilizarse
Cuántos voltios/db se deben utilizar para representar un estado de señal en particular mediante un medio físico determinado
CAPA DE VÍNCULO DE DATOS
La capa de vínculo de datos ofrece una transferencia sin errores de tramas de datos desde un nodo a otro a través de la capa física, permitiendo a las capas por encima asumir virtualmente la transmisión sin errores a través del vínculo. Para ello, la capa de vínculo de datos proporciona:
Establecimiento y finalización de vínculos: establece y finaliza el vínculo lógico entre dos nodos.
Control del tráfico de tramas: indica al nodo de transmisión que "dé marcha atrás" cuando no haya ningún búfer de trama disponible.
Secuenciación de tramas: transmite y recibe tramas secuencialmente.
Confirmación de trama: proporciona/espera confirmaciones de trama. Detecta errores y se recupera de ellos cuando se producen en la capa física mediante la retransmisión de tramas no confirmadas y el control de la recepción de tramas duplicadas.
Delimitación de trama: crea y reconoce los límites de la trama.
Comprobación de errores de trama: comprueba la integridad de las tramas recibidas.
Administración de acceso al medio: determina si el nodo "tiene derecho" a utilizar el medio físico.
CAPA DE RED
La capa de red controla el funcionamiento de la subred, decidiendo qué ruta de acceso física deberían tomar los datos en función de las condiciones de la red, la prioridad de servicio y otros factores. Proporciona:
Enrutamiento: enruta tramas entre redes.
Control de tráfico de subred: los enrutadores (sistemas intermedios de capa de red) pueden indicar a una estación emisora que "reduzca" su transmisión de tramas cuando el búfer del enrutador se llene.
Fragmentación de trama: si determina que el tamaño de la unidad de transmisión máxima (MTU) que sigue en el enrutador es inferior al tamaño de la trama, un enrutador puede fragmentar una trama para la transmisión y volver a ensamblarla en la estación de destino.
Asignación de direcciones lógico-físicas: traduce direcciones lógicas, o nombres, en direcciones físicas.
Cuentas de uso de subred: dispone de funciones de contabilidad para realizar un seguimiento de las tramas reenviadas por sistemas intermedios de subred con el fin de producir información de facturación.
Subred de comunicaciones
El software de capa de red debe generar encabezados para que el software de capa de red que reside en los sistemas intermedios de subred pueda reconocerlos y utilizarlos para enrutar datos a la dirección de destino.
Esta capa libera a las capas superiores de la necesidad de tener conocimientos sobre la transmisión de datos y las tecnologías de conmutación intermedias que se utilizan para conectar los sistemas de conmutación. Establece, mantiene y finaliza las conexiones entre las instalaciones de comunicación que intervienen (uno o varios sistemas intermedios en la subred de comunicación).
En la capa de red y las capas inferiores, existen protocolos entre pares entre un nodo y su vecino inmediato, pero es posible que el vecino sea un nodo a través del cual se enrutan datos, no la estación de destino. Las estaciones de origen y de destino pueden estar separadas por muchos sistemas intermedios.
CAPA DE TRANSPORTE
La capa de transporte garantiza que los mensajes se entregan sin errores, en secuencia y sin pérdidas o duplicaciones. Libera a los protocolos de capas superiores de cualquier cuestión relacionada con la transferencia de datos entre ellos y sus pares.
El tamaño y la complejidad de un protocolo de transporte depende del tipo de servicio que pueda obtener de la capa de transporte. Para tener una capa de transporte confiable con una capacidad de circuito virtual, se requiere una mínima capa de transporte. Si la capa de red no es confiable o solo admite datagramas, el protocolo de transporte debería incluir detección y recuperación de errores extensivos.
La capa de transporte proporciona:
Segmentación de mensajes: acepta un mensaje de la capa (de sesión) que tiene por encima, lo divide en unidades más pequeñas (si no es aún lo suficientemente pequeño) y transmite las unidades más pequeñas a la capa de red. La capa de transporte en la estación de destino vuelve a ensamblar el mensaje.
Confirmación de mensaje: proporciona una entrega de mensajes confiable de extremo a extremo con confirmaciones.
Control del tráfico de mensajes: indica a la estación de transmisión que "dé marcha atrás" cuando no haya ningún búfer de mensaje disponible.
Multiplexación de sesión: multiplexa varias secuencias de mensajes, o sesiones, en un vínculo lógico y realiza un seguimiento de qué mensajes pertenecen a qué sesiones (consulte la capa de sesiones).
Normalmente, la capa de transporte puede aceptar mensajes relativamente grandes, pero existen estrictas limitaciones de tamaño para los mensajes impuestas por la capa de red (o inferior). Como consecuencia, la capa de transporte debe dividir los mensajes en unidades más pequeñas, o tramas, anteponiendo un encabezado a cada una de ellas.
Así pues, la información del encabezado de la capa de transporte debe incluir información de control, como marcadores de inicio y fin de mensajes, para permitir a la capa de transporte del otro extremo reconocer los límites del mensaje. Además, si las capas inferiores no mantienen la secuencia, el encabezado de transporte debe contener información de secuencias para permitir a la capa de transporte en el extremo receptor recolocar las piezas en el orden correcto antes de enviar el mensaje recibido a la capa superior.
Capas de un extremo a otro
A diferencia de las capas inferiores de "subred" cuyo protocolo se encuentra entre nodos inmediatamente adyacentes, la capa de transporte y las capas superiores son verdaderas capas de "origen a destino" o de un extremo a otro, y no les atañen los detalles de la instalación de comunicaciones subyacente. El software de capa de transporte (y el software superior) en la estación de origen lleva una conversación con software similar en la estación de destino utilizando encabezados de mensajes y mensajes de control.
CAPA DE SESIÓN
La capa de sesión permite el establecimiento de sesiones entre procesos que se ejecutan en diferentes estaciones. Proporciona:
Establecimiento, mantenimiento y finalización de sesiones: permite que dos procesos de aplicación en diferentes equipos establezcan, utilicen y finalicen una conexión, que se denomina sesión.
Soporte de sesión: realiza las funciones que permiten a estos procesos comunicarse a través de una red, ejecutando la seguridad, el reconocimiento de nombres, el registro, etc.
CAPA DE PRESENTACIÓN
La capa de presentación da formato a los datos que deberán presentarse en la capa de aplicación. Se puede decir que es el traductor de la red. Esta capa puede traducir datos de un formato utilizado por la capa de la aplicación a un formato común en la estación emisora y, a continuación, traducir el formato común a un formato conocido por la capa de la aplicación en la estación receptora.
La capa de presentación proporciona:
Conversión de código de caracteres: por ejemplo, de ASCII a EBCDIC.
Conversión de datos: orden de bits, CR-CR/LF, punto flotante entre enteros, etc.
Compresión de datos: reduce el número de bits que es necesario transmitir en la red.
Cifrado de datos: cifra los datos por motivos de seguridad. Por ejemplo, cifrado de contraseñas.
CAPA DE APLICACIÓN
El nivel de aplicación actúa como ventana para los usuarios y los procesos de aplicaciones para tener acceso a servicios de red. Esta capa contiene varias funciones que se utilizan con frecuencia:
Uso compartido de recursos y redirección de dispositivos
Acceso a archivos remotos
Acceso a la impresora remota
Comunicación entre procesos
Administración de la red
Servicios de directorio
Mensajería electrónica (como correo)
Terminales virtuales de red
5) Funciones básicas de cada capa del modelo OSI
Capa Física.
· Transmisión de flujo de bits a través del medio. No existe estructura alguna.
· Maneja voltajes y pulsos eléctricos.
· Especifica cables, conectores y componentes de interfaz con el medio de transmisión.
Capa Enlace de Datos.
· Estructura el flujo de bits bajo un formato predefinido llamado trama.
· Para formar una trama, el nivel de enlace agrega una secuencia especial de bits al principio y al final del flujo inicial de bits.
· Transfiere tramas de una forma confiable libre de errores (utiliza reconocimientos y retransmisión de tramas).
· Provee control de flujo.
· Utiliza la técnica de "piggybacking".
Capa de Red (Nivel de paquetes).
· Divide los mensajes de la capa de transporte en paquetes y los ensambla al final.
· Utiliza el nivel de enlace para el enví o de paquetes: un paquete es encapsulado en una trama.
· Enrutamiento de paquetes.
· Enví a los paquetes de nodo a nodo usando ya sea un circuito virtual o como datagramas.
· Control de Congestión.
Capa de Transporte.
· Establece conexiones punto a punto sin errores para el enví o de mensajes.
· Permite multiplexar una conexión punto a punto entre diferentes procesos del usuario (puntos extremos de una conexión).
· Provee la función de difusión de mensajes (broadcast) a múltiples destinos.
· Control de Flujo.
Capa de Sesión.
· Permite a usuarios en diferentes máquinas establecer una sesión.
· Una sesión puede ser usada para efectuar un login a un sistema de tiempo compartido remoto, para transferir un archivo entre 2 máquinas, etc.
· Controla el diálogo (quién habla, cuándo, cuánto tiempo, half duplex o full duplex).
· Función de sincronización.
Capa de Presentación.
· Establece una sintaxis y semántica de la información transmitida.
· Se define la estructura de los datos a transmitir (v.g. define los campos de un registro: nombre, dirección, teléfono, etc).
· Define el código a usar para representar una cadena de caracteres (ASCII, EBCDIC, etc).
· Compresión de datos.
· Criptografí a.
Capa de Aplicación.
· Transferencia de archivos (ftp).
· Login remoto (rlogin, telnet).
· Correo electrónico (mail).
· Acceso a bases de datos, etc.
6) Haga una pequeña descripción sobre los diferentes dispositivos utilizados en las cuatro primeras capas de modelo OSI
Generalmente los dispositivos utilizados en las redes circunscriben su operación a uno o varios de estos niveles. Por ejemplo, un concentrador ("Hub") que amplifica y retransmite la señal a través de todos sus puertos, está operando exclusivamente en la capa 1, mientras que un conmutador ("Switch") opera en las capas 1 y 2; un enrutador ("Router") opera en las capas 1, 2 y 3. Finalmente una estación de trabajo de usuario generalmente maneja las capas 5, 6 y 7.
Transporte (Capa 4) – Escribe
Red (Capa 3) – Escribe
Enlace de datos (Capa 2) – Escribe
Física (Capa 1) – Escribe
7) Cuáles son los principales inconvenientes en la capa física del modelo OSI
Errores de cableado
Conectar cables en forma incorrecta
Tender cables cerca de otros cables
Cables mal ubicados y mal colocados
Existen muchas maneras de atentar contra la capa física. (Acceder a la seguridad de los datos, robo de información)
8) Describa las subdivisiones que existen en la capa de enlace del modelo OSI
La capa de enlace puede considerarse dividida en dos subcapas:
Control lógico de enlace LLC ("Logical Link Control") define la forma en que los datos son transferidos sobre el medio físico, proporcionando servicio a las capas superiores.
Control de acceso al medio MAC ("Medium Access Control"). Esta subcapa actúa como controladora del hardware subyacente. De hecho el controlador de la tarjeta de red es denominado a veces "MAC driver", y la dirección física contenida en el hardware de la tarjeta es conocida como dirección MAC.
9) ¿Qué niveles OSI son los niveles de soporte de red y de soporte de usuario?
Los niveles físicos de enlace de datos y de red
: Los niveles de Sesión, Presentación y Aplicación
10) ¿Cómo se relacionan los niveles de la familia del protocolo TCP/IP con los niveles del modelo OSI?
La familia de protocolos de Internet es un conjunto de protocolos de red en los que se basa Internet y que permiten la transmisión de datos entre computadoras. En ocasiones se le denomina conjunto de protocolos TCP/IP, en referencia a los dos protocolos más importantes que la componen: Protocolo de Control de Transmisión (TCP) y Protocolo de Internet (IP), que fueron dos de los primeros en definirse, y que son los más utilizados de la familia. Existen tantos protocolos en este conjunto que llegan a ser más de 100 diferentes, entre ellos se encuentra el popular HTTP (HyperText Transfer Protocol), que es el que se utiliza para acceder a las páginas web, además de otros como el ARP (Address Resolution Protocol) para la resolución de direcciones, el FTP (File Transfer Protocol) para transferencia de archivos, y el SMTP (Simple Mail Transfer Protocol) y el POP (Post Office Protocol) para correo electrónico, TELNET para acceder a equipos remotos, entre otros.
No hay comentarios.:
Publicar un comentario